ã©ããïŒRyeChemã§ãïŒ
ä»åã®èšäºã¯ãQCæ€å®ã®æ°åŒäžèŠ§ã»æ©èŠè¡š(ååPart)ãã«ãªããŸãïŒ
ä»èšäºã§ã¯QCæ€å®3çŽã»2çŽã®ç¯å²ã察象ã«ãQCæ€å®ã§é »åºã®æ°åŒãäžèŠ§ã«æ©èŠè¡šãšããŠãŸãšããŠããŸãã
æ°åŒãèŠããã®ã ãããšã«ããåä»ãªQCæ€å®ã§ãããéã«èšãã°åŒããèŠããŠããŸãã°ããšã¯ãããªã«é£ãããããŸããã
ä»åã®èšäºã§ã¯ãååPartãšããããšã§ãåºæ¬çµ±èšéãïœãæ€å®ã»æšå®ãã®åéãŸã§ãåé²ããŠããŸãã

- QCæ€å®2çŽãŸãã¯3çŽã®åéšãèããŠããæ¹
- æ°åŒãèŠããã®ãèŠæãªæ¹
- æ°åŒã®äžèŠ§è¡šãèŠããæ¹
Contents
QCæ€å®ã§æ±ãæ°åŒã®äžèŠ§ã»æ©èŠè¡š
ä»åã®èšäºã§ã¯åºæ¬çµ±èšéãããæ€å®ã»æšå®ãåéãŸã§æ±ããŸãã
ãã®äžã§çšããæ°åŒã®äžèŠ§è¡šã以äžã«èšããŸããåºæ¬çã«ã¯å šãŠèŠããŸãããã
åºæ¬çµ±èšé | |
å¹³åå€ | \(\bar{x}=\frac{ããŒã¿ã®åèš}{ããŒã¿ã®åæ°}=\frac{\displaystyle \sum_{i=1}^{n}x_i}{n}\) |
ã¡ãã£ã¢ã³ | \(\tilde{x}\)=äžå€®ã«äœçœ®ããå€(å¥æ°)ãŸã㯠äžå€®2ã€ã®å€ã®å¹³åå€(å¶æ°) |
ç¯å² | \(R=x(max)-x(min)\) |
å¹³æ¹å | \(S=\sum(x_i-\bar{x})^2=\sum x_i^2-\frac{(\sum x_i)^2}{n}\) |
äžååæ£ | \(V=\frac{S}{\phi}\) ããããS:å¹³æ¹å, Ί(èªç±åºŠ)=n-1 |
æšæºåå·® | \(s=\sqrt{V}\)ããã V:äžååæ£ |
å€åä¿æ° | \(CV=\frac{s}{\bar{x}}\) |
å·¥çšèœåææ° | ||
Cp | \(Cp=\frac{èŠæ Œäžé-èŠæ Œäžé}{6Ãæšæºåå·®}\) | |
Cpk(èŠæ Œäžé) | \(Cpk=\frac{x_{max}-\bar{x}}{3Ãæšæºåå·®}\) | Cpkã¯ã©ã¡ããå°ããå€ãæ¡æ |
Cpk(èŠæ Œäžé) | \(Cpk=\frac{\bar{x}-x_{min}}{3Ãæšæºåå·®}\) |
確çååž | ||||
ååžã®çš®é¡ | åŒ | æåŸ å€ | åæ£ | |
æ£èŠååž | ã¬ãŠã¹ååž | \(f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})\) | ÎŒ | Ï2 |
æšæºå | \(Z=\frac{x-\mu}{\sigma}\) | 0 | 12 | |
äºé ååž | \(P(x)={}_n C_k \times p^x \times (1-p)^{n-x}\) | np | np(1-p) | |
ãã¢ãœã³ååž | \(P(x)=\frac{\mu^xe^{-\mu}}{x!}\) | λ | λ |
æ€å®ã»æšå® | ||||
æ¡ä»¶ | çµ±èšæ€å®é | äžé | äžé | |
èšéæ°å¹³å | åæ£æ¢ç¥ | \(Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) | \(\bar{x}+Z(\frac{\alpha}{2})\times\frac{\sigma}{\sqrt{n}}\) | \(\bar{x}-Z(\frac{\alpha}{2})\times\frac{\sigma}{\sqrt{n}}\) |
 | åæ£æªç¥ | \(t=\frac{\bar{x}-\mu}{\frac{\sqrt{V}}{\sqrt{n}}}\) | \(\bar{x}+t(\phiã\alpha)\times\frac{\sqrt{V}}{\sqrt{n}}\) | \(\bar{x}-t(\phiã\alpha)\times\frac{\sqrt{V}}{\sqrt{n}}\) |
èšéæ°åæ£ | éå£1〠| \(\chi^2=\frac{S}{\sigma^2}\) | \(\chi^2(\phiã1-\frac{\alpha}{2})\) | \(\chi^2(\phiã\frac{\alpha}{2})\) |
 | éå£2〠| \(F=\frac{V_B}{V_A}\) | \(F(\phi_Bã\phi_AïŒ\frac{\alpha}{2})\) |  |
èšæ°å€é©åç | éå£1〠| \(Z=\frac{p-P_0}{\sqrt{\frac{P_0(1-P_0)}{n}}}\) | \(p\pm Z(\frac{\alpha}{2})\times\frac{\sqrt{p(1-p)}}{\sqrt{n}}\) | |
 | éå£2〠| \(Z=\frac{p_A-p_B}{\sqrt{\bar{p}(1-\bar{p})(\frac{1}{n_A}+\frac{1}{n_B})}}\) | \(p_A-p_B\pm Z(\frac{\alpha}{2})\sqrt{\frac{P_A(1-p_A)}{n_A}+\frac{p_B(1-p_B)}{n_B}}\) | |
èšæ°å€é©åæ° | éå£1〠| \(Z=\frac{\hat{\lambda}-\lambda_0}{\sqrt{\frac{\lambda_0}{n}}}\) | \(\hat{\lambda}\pm Z(\frac{\alpha}{2})\times \frac{\sqrt{\hat{\lambda}}}{\sqrt{n}}\) | |
 | éå£2〠| \(Z=\frac{\hat{\lambda_A}-\hat{\lambda_B}}{\sqrt{\hat{\lambda}\times (\frac{1}{n_A}+\frac{1}{n_B})}}\) | \(\hat{\lambda_A}-\hat{\lambda_B}\pm Z(\frac{\alpha}{2})\sqrt{\frac{\hat{\lambda_A}}{n_A}+\frac{\hat{\lambda_B}}{n_B}}\) |
åºæ¬çµ±èšéãšå·¥çšèœåææ°
ãŸããåºæ¬çãªçµ±èšéã®ç®åºãšãå®è£œé ã§å®ããããå·¥çšã®è©äŸ¡ææ³ã«é¢ããŠèª¬æããŠãããŸãã
åºæ¬çµ±èšé
æ¯éå£ã®äžãããµã³ããªã³ã°ãè¡ããåãåºããéå£ã®åçµ±èšéãç®åºããåŒã以äžã«ãŸãšããŸãã
ããã§ã¯ç¹ã«ãå¹³æ¹åã»äžååæ£ã»æšæºåå·®ã«é¢ããŠã確å®ã«èŠããããã«ããŸãããã
å¹³åå€ | \(\bar{x}=\frac{ããŒã¿ã®åèš}{ããŒã¿ã®åæ°}=\frac{\displaystyle \sum_{i=1}^{n}x_i}{n}\) |
ã¡ãã£ã¢ã³ | \(\tilde{x}=äžå€®ã«äœçœ®ããå€(å¥æ°)ãŸãã¯äžå€®2ã€ã®å€ã®å¹³åå€(å¶æ°)\) |
ç¯å² | \(R=x(max)-x(min)\) |
å¹³æ¹å | \(S=\sum(x_i-\bar{x})^2=\sum x_i^2-\frac{(\sum x_i)^2}{n}\) |
äžååæ£ | \(V=\frac{S}{\phi}\) ããããS:å¹³æ¹å, Ί(èªç±åºŠ)=n-1 |
æšæºåå·® | \(s=\sqrt{V}\)ããã V:äžååæ£ |
å€åä¿æ° | \(CV=\frac{s}{\bar{x}}\) |
å¹³åå€
å¹³åå€ã¯æ°å€ã®ç·åããµã³ãã«æ°ã§é€ããå€ã§ãã
ããŒã¿ã®ã»ãŒäžå€®ã«äœçœ®ããå€ã§ãã
âã»ãŒâãšèšèŒããã®ã¯åŸè¿°ããã¡ãã£ã¢ã³å€ãšã®åºå¥ã®ããã§ãã
ã¡ãã£ã¢ã³
枬å®å€ã倧ããé ã«äžŠã¹ãæã®äžå€®ã«äœçœ®ããå€ã§ãã
å¥æ°ã®å Žåã«ã¯äžå€®ã«æ¥ãæ°åã¯ãã 1ã€ã«æ±ºãŸããŸãã
ãã åœç¶ã§ãããå¶æ°ã®å Žåã«ã¯æ°å€ã2ã€ã®ããããã®å¹³åãã¡ãã£ã¢ã³å€ãšããŸãã
ç¯å²R
äžçµã®æž¬å®å€ã®äžã®æ倧å€ãšæå°å€ã®å·®ã§ãã
å¹³æ¹åS
åã ã®æž¬å®å€ãšå¹³åå€ãšã®å·®ã®äºä¹ã®åã§è¡šãããå€ã§ãã
äžèšè¡šäžã«èšèŒã®å€åœ¢åŒã®æ¹ãQCæ€å®ã®èšç®åé¡ã§ã¯ããå©çšãããŸãã
ãã ãæç« èª¬æã§ã¯å€åœ¢åã®å®çŸ©ã§ç»å Žããããšãå€ãã®ã§ãçµå±ã©ã¡ããèŠããªããã°ãªããŸããã
äžååæ£V
ã°ãã€ãã®å°ºåºŠãè¡šãå€ã§ãããäžè¬çã«ã¯æ¯åæ£ã®æšå®å€ãšããŠäœ¿çšãããŸãã
æšæºåå·®
æšæºåå·®sã¯äžååæ£Vã®å¹³æ¹æ ¹ã§è¡šãããŸãã
å¹³æ¹åã»äžååæ£ãšå ±ã«æ€å®ã»æšå®åé¡çã§é »åºãªã®ã§ã確å®ã«èŠããŸãããã
å€åä¿æ°CV
æšæºåå·®ãšå¹³åå€ã®æ¯ãå€åä¿æ°ãšãããCVã§è¡šããŸãã
ããã»ã©é »åºã§ã¯ãããŸããã
å·¥çšèœåææ°
å·¥çšèœåææ°ãšã¯ãå®ããããèŠæ Œå€ã®ç¯å²å ã§è£œåãçç£ããèœåã®è©äŸ¡ææšã«ãªããŸãã
Cpâ§1.67ïŒååããã
1.67>Cpâ§1.33ïŒååæºè¶³ã§ãã
1.33>Cpâ§1.0ïŒå第ç¹ãååãªç¶æ ãžã®æ¹åãç®æã
1.0>Cpâ§0.67ïŒäžè¶³ããŠãããããèŠæ¹å
Cp<0.67ïŒå®å šã«äžè¶³ãåå 究æãšèŠåŠçœ®
å 容èªäœã¯é »åºãšããã»ã©ã§ããããŸããã
ãã ãç®åºåŒã¯ç°¡åã«èŠããããããã確å®ã«èšæ¶ããŠãããŸãããã
äž¡åŽèŠæ ŒCpã®å Žå
å¹³åå€ãèŠæ Œäžå€®ã«ã³ã³ãããŒã«ã§ããå Žåã«äœ¿çšã
\(Cp=\frac{èŠæ Œäžé-èŠæ Œäžé}{6Ãæšæºåå·®}\)
çåŽèŠæ ŒCpkã®å Žå
å¹³åå€ãèŠæ Œäžå€®ã«ã³ã³ãããŒã«ã§ããªãå Žåã«äœ¿çšããŸãã
ã€ãŸããã°ã©ããæ£èŠååžæ§ã§ãªããã©ã¡ããã«è£Ÿã䌞ã³ããããªé察称系ãèæ ®ããç®åºæ³ã«ãªããŸãã
äžéã»äžéãæ±ããåŸãããããã®Cpkãå°ããå€ãæ¡æããŸãã
â äžéèŠæ ŒïŒ\(Cpk=\frac{x_{max}-\bar{x}}{3Ãæšæºåå·®}\)
â¡äžéèŠæ ŒïŒ\(Cpk=\frac{\bar{x}-x_{min}}{3Ãæšæºåå·®}\)
確çååž
確çååžã¯æ£èŠååžã代衚ãšããååžå³ã§ãããäºè±¡ã®ç¢ºçãæ±ããããšãå¯èœã§ãã
ããã3ã€ã®ç¢ºçååžãçšããèšç®åé¡ã¯é »åºã§ãã®ã§ã確å®ã«èŠããŸãããã
æ£èŠååž
æ£èŠååžãšã¯é£ç¶ããå·Šå³å¯Ÿç§°ãªååžã§ããã®ç¢ºçå¯åºŠé¢æ°f(x)ã¯æ¬¡ã®éãã§ãã
ã¬ãŠã¹ååžãšãåŒã°ããŠããŸãã
\(f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})\)
æ£èŠååžã¯å¹³åå€=ÎŒãšåæ£=Ï^2ã«ãã£ãŠå®ãŸãååžã§ãäžè¬çã«\(N(\muã\sigma^2)\)ãšè¡šããŸãã
\(Z=\frac{x-\mu}{\sigma}\)
ãšãããšãxã\(N(0ã1^2)\)ã«å€æããããšãã§ãããããæšæºåããããã¯åºæºåãšåŒã³ãŸãã
確çå€æ°Zã¯\(æåŸ å€(å¹³åå€)=0ãåæ£=1^2\)ã®æ£èŠååžã«åŸãããã®ãããªæ£èŠååž\(N(0ã1^2)\)ãæšæºæ£èŠååžãšåŒã³ãŸãã
ãã®å€ãšãæ£èŠååžè¡šãçšããããšã§äºè±¡ã®ç¢ºçãç®åºã§ããŸãã
éã«ãäºè±¡ã®ç¢ºçããZãç®åºããæšæºåå·®ãããã¯å¹³åå€ãæ±ããããšãã§ããŸãã
äºé ååž
\(P(x)={}_n C_k \times p^x \times (1-p)^{n-x}\)
ã§äžããããååžãäºé ååžãšèšããŸãã

äºé ååžã¯\(B(nãp)\)ã§è¡šãããŸãã
ãŸãããã®æåŸ å€ã¯\(E(x)=np\), æšæºåå·®ã¯\(\sigma(x)=\sqrt{np(1-p)}\)ãšè¡šãããŸãã
ãã¢ãœã³ååž
ãã¢ãœã³ååžã¯ããŸãã«ããèµ·ãããªãçŸè±¡ã®åºçŸåºŠæ°ååžã«ããŠã¯ãŸããšããããŠããŸãã
æ¯å¹³åÎŒãäžãããããšãã«äºè±¡ãxååºçŸãã確çãè¡šããã¢ãœã³ååžã®äžè¬åŒã¯æ¬¡ã®éãã
\(P(x)=\frac{\mu^xe^{-\mu}}{x!}\)
ãã¢ãœã³ååžã®æåŸ å€ã¯\(E(x)=\lambda\)ãæšæºåå·®ã¯\(\sigma(x)=\sqrt{\lambda}\)ãšè¡šãããŸãã
æåŸ å€ãšåæ£ã\(\lambda\)ã§ããããšèŠãããšããã§ãããã
æåŸ å€ãšåæ£ã®æ§è³ª
- 確çå€æ°ã«å®æ°aãå ãããšæåŸ å€ã¯aã ãå¢å ãåæ£Vã¯å€åããªãã
- 確çå®æ°ã«å®æ°cãæãããšæåŸ å€ã¯cåã«å¢å ãåæ£Vã¯c^2åã«å¢å
- 2ã€ã®ç¢ºçå€æ°ã®å(å·®)ã®æåŸ å€ã¯ããã®ãã®ã®ç¢ºçå€æ°ã®åã®æåŸ å€ã®å(å·®)ã«çããã
- 2ã€ã®ç¬ç«ãªç¢ºçå€æ°ã®åã®åæ£ã¯ããã®ãã®ã®ç¢ºçå€æ°ã®åæ£ã®åã«çããã
ç¬ç«ã§ãªãå Žåã¯ãV(x)+V(y)+2Cov(x,y)ãšå ±åæ£é ãçŸããã
çµ±èšéã®ååžãæ€å®çµ±èšéã®ç®åº
ããããã¯ãå®éã®QCæ€å®ã®åé¡ã§é »åºã®æ€å®çµ±èšéã®ç®åºã«ãªããŸãã

å¹³åå€ã®ååž
æ¯å¹³å\(\mu\)ãæ¯åæ£\(\sigma^2\)ã®æ¯éå£ãã倧ããnã®ãµã³ãã«ãã©ã³ãã ã«æœåºãããšã(æ¯éå£ã®åæ£ãæ¢ç¥)ãnåã®ãµã³ãã«ã®å¹³åå€xã®å¹³åå€ãšåæ£
\(E(x)=\mu\)
\(V(x)=\frac{\sigma^2}{n}\)
\(Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\)
ãã®ãšããZãæ€å®çµ±èšéãšåŒã³ãŸãã
tååž
æ¯åæ£ãæªç¥ã®éå£ããããµã³ãã«ãnååãåºããå Žåã«æ€å®çµ±èšétã¯èªç±åºŠ\(\phi=n-1\)ã®tååžãšããååžã§è¡šãããŸãã
ãã®ãšããæ€å®çµ±èšétã¯ã\(t=\frac{\bar{x}-\mu}{\frac{\sqrt{V}}{\sqrt{n}}}\)ãã§è¡šãããŸãã
åãåºãããµã³ãã«éå£ã®äžååæ£ã¯VãšããŸãã
X2(ã«ã€ã®äºä¹)ååž
\(N(\muã\sigma^2)\)ããnåã®ãµã³ãã«ãåãããã®å¹³æ¹åSã\(\sigma^2\)ã§å²ã£ããã®ã¯èªç±åºŠ \(\phi=n-1\) ã® \(\chi^2\)ååž ã§è¡šãããŸãã
\(\chi^2=\frac{S}{\sigma^2}\)
Fååž
åæ£ã®çãã2ã€ã®æ£èŠååžãããããããã©ã³ãã ã«åãããn1, n2ã®ãµã³ãã«ããåŸãããäžååæ£ã\(V_1ãV_2\)ãšãããšã
\(F=\frac{V_1}{V_2}\)ãšãªããèªç±åºŠ \(\phi_1=n_1-1ã\phi_2=n_2-1\) ã®Fååžã«åŸããŸãã
èšéå€ã®æ€å®ã»æšå®
çµ±èšçæ€å®ãšã¯ãæ¯éå£ããã©ã³ãã ã«ãµã³ããªã³ã°ããå Žåããã®çµ±èšéãèšç®ããããšã§ãæ¯éå£ã«é¢ããåçš®ã®ä»®èª¬ã«å¯ŸããŠé©åŠå€å®ãè¡ããã®ã§ãã
äŸãã°ãããåå¿ã§åŸãããåºäœã®ç²ååŸ(ÎŒm)ã«çç®ããŸãããã
ãã®ååžã¯æ¯å¹³å\(\mu\)=200.0ã§ãæ¯åæ£\(\sigma^2=20^2\)ã®æ£èŠååžãããŠãããšããŸãã
ãã®å®éšã«ãããŠãæ¹æé床ãå€æŽãããšãããç²ååŸã®å¹³åã180.0ã«ãªããŸããã
ãã®æãæ¹æé床å€æŽã«ããç²ååŸå¹³åã«äžãã圱é¿ãææãåŠããå€å®ãããªã©ãã§ãã
蚌æããã仮説ãšã¯éã®ä»®èª¬ãåž°ç¡ä»®èª¬\(H_0\)ã§è¡šããŸãã
åž°ç¡ä»®èª¬ãšã¯å察ã«ãæ¬æ¥èšŒæããã仮説(察ç«ä»®èª¬)ã\(H_1\)ã§è¡šããŸãã
äžèšäŸã®å Žåã¯ã\(H_0=200.0\)ã§ã\(H_1\neq200.0\)ã§ãã
å€å®ã«ãããå¹³åã200.0ããå€åããŠãããšèªããããã°ããåž°ç¡ä»®èª¬ãæ£åŽããããšèšããŸãã
äžæ¹ãå€åãèªããããªãã£ãå Žåãåž°ç¡ä»®èª¬ãæ£åŽã§ããªãã£ãããšèšããåž°ç¡ä»®èª¬ãæ¡æããŸãã
ãã®ãšããæéã®è©Šè¡åæ°ãŸãã¯ãµã³ãã«éå£ãåºã«ããå€å®ãçã«æ¯éå£ãåæ ããŠãããæ£ãããšã¯èšãåããŸããã
ãã®å Žåã«ã仮説ãæšãŠãããæšãŠãªããã®å€æãããå°ããªç¢ºçãå±éºçãŸãã¯æææ°Žæºãšèšãã\(\alpha\)ã§è¡šããŸãã

æ£åŽåãšæ£åŽéçå€
ããååžã®æææ°Žæºãå±éºçã«ããå®ããããæ£åŽããç¯å²ãæ£åŽåãšåŒã³ããã®éçç¹ãæ£åŽéçå€ãšåŒã³ãŸãã
åè¿°ããåçš®ååžã®çµ±èšæ€å®éãšã察å¿ããååžã®æææ°Žæºã«ãã£ãŠå®ããããæ£åŽéçå€ãšãæ¯èŒãã倧å°é¢ä¿ã«ãã仮説ã®é©åŠå€å®ãè¡ããŸãã
å±éºçãšæ£åŽéçå€ã®å¯Ÿå¿è¡šã¯æ£èŠååžãtååžãÏååžãFååžçãä»å±ããŠããã®ã§ãèªã¿åãã ããšãªããŸãã
å¹³åå€ã«é¢ããæ€å®
æ£èŠæ¯éå£ããã©ã³ãã ã«åãããnåã®ãµã³ãã«ãããå Žåãæ¯éå£ã®å¹³åå€ãšè©Šæå¹³åå€ãšã®éã«å·®ããããã©ãããæ€å®ããŸãã
ãã®å Žåã«çšããæ€å®çµ±èšéã¯2éããããŸãã
(1)æ¯éå£ã®åæ£\(\sigma^2\)ãæ¢ç¥ã®å ŽåïŒZæ€å®çµ±èšé
(2)æ¯éå£ã®åæ£\(\sigma^2\)ãæªç¥ã®å ŽåïŒtæ€å®çµ±èšé
äžè¿°ã®æ€å®çµ±èšéã®åŒã«äžããããå€ãä»£å ¥ããæ€å®çµ±èšéãæ±ããŸãã
ãŸããæææ°Žæºãšèªç±åºŠããè¡šãçšããŠãæ£åŽéçå€ãåŸãŸãã
ãããå€ãæ¯èŒããæ€å®çµ±èšéïŒæ£åŽéçå€ã ã£ãå Žåã«ã¯ãæ£åŽåãšãªããŸãã®ã§ãåž°ç¡ä»®èª¬ãæ£åŽããŸãã
å¹³åå€ã«é¢ããæšå®
æšå®ãšã¯ãæ¯éå£ããåãåºãããµã³ãã«ãçµ±èšçã«åŠçããããšã§ãæ¯éå£ã®ç¹æ§ãç¥ãããšã§ãã
çã«ãã1ã€ã®å€ã«ã¯æ±ºå®ããããšãã§ããŸããããååã«ç¢ºããããåºéãæšå®ããããšãã§ããŸãã
æ¯åæ£ãæ¢ç¥ã®å Žå
èãããæ€å®çµ±èšéã®ç¯å²ã¯ãæ£åŽéçå€(äžé)âŠæ€å®çµ±èšéâŠæ£åŽéçå€(äžé)ãšãªããŸãã
æ£èŠååžã®æ£åŽéçå€ã¯ \(Z(\alpha)\)ã§è¡šãããŸãã
æææ°ŽæºÎ±=5%ã®ãšããäžéãšäžéã«æææ°ŽæºÎ±=2.5%ãã€ã®æ£åŽåããããšèãã以äžã®ããã«ãªããŸãã
\(-Z(\frac{\alpha}{2}) \le \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \le Z(\frac{\alpha}{2})\)
äžåŒãæŽçããŠãæ¯å¹³åÎŒã®æšå®å€äžéãšäžéã¯äžèšã®ããã«ãªããŸãã
æ¯å¹³åÎŒã®äžéã¯ã \(\bar{x}+Z(\frac{\alpha}{2})\times\frac{\sigma}{\sqrt{n}}\)
æ¯å¹³åÎŒã®äžéã¯ã \(\bar{x}-Z(\frac{\alpha}{2})\times\frac{\sigma}{\sqrt{n}}\)
ãšãªããŸãã
æ¬æšå®åºéã®ä¿¡é ŒåºŠã¯1-αãšãªããŸãã
æ¯åæ£ãæªç¥ã®å Žå
äžè¿°ã®âæ¯åæ£ãæ¢ç¥âã®å Žåãšå€§ããªå·®ç°ã¯ãããŸããããæ¯åæ£ãæªç¥ã®ããæ¯åæ£Ïã¯å©çšã§ããŸããã
ããã§ãè©Šæéå£ã®äžååæ£Vãèæ ®ããŠãåŒãæ±ããããšãšãªããŸãã
tååžã®æ£åŽéçå€ã¯ãèªç±åºŠÎŠãšãæææ°ŽæºÎ±ã§tè¡šããç®åºã§ããŸãã
\(-t(\alpha) \le \frac{\bar{x}-\mu}{\frac{\sqrt{V}}{\sqrt{n}}} \le t(\alpha)\)
ããã§ã泚æç¹ããããŸãã
tååžã ãã¯tè¡šã«äž¡åŽç¢ºçã§æææ°ŽæºÎ±ãèšèŒãããŠããããã\(\frac{α}{2}\)ãšãªããŸããã
â»çåŽæ€å®ã®å Žåã«ã¯ãäžè¿°ã®æ£èŠååžã¯\(Z(\alpha)\)ãtååžã®å Žåã«ã¯\(t(2\alpha)\) ãšãªããŸãã
ãã£ãŠãæ¯å¹³åÎŒã®äžéã¯ã\(\bar{x}+t(\phiã\alpha)\times\frac{\sqrt{V}}{\sqrt{n}}\)
ããããæ¯å¹³åÎŒã®äžéã¯ã\(\bar{x}-t(\phiã\alpha)\times\frac{\sqrt{V}}{\sqrt{n}}\)
æ¯åæ£ã«é¢ããæ€å®
å¹³åãšã¯å€ãããæ¯åæ£ã«é¢ããæ€å®ã§ã¯Ï2ååžãšFååžã䜿çšããŸãã
æ¯åæ£ã®å€åã«é¢ããŠ
æ¢ã«èšèŒãããæ€å®çµ±èšé \(\chi^2=\frac{S}{\sigma_0}\) ãå©çšããŸãã
Ï2ååžã䜿çšãã泚æç¹ãšããŠã¯ãååžãé察称系ã§ããããšã§ãã
ã€ãŸããå¹³åå€ã«é¢ããæ€å®ã§å©çšããæ£èŠååžãtååžã®ããã«ãæ£åŽéçå€ã®äžéãšäžéãåäžã®å€ãšãªããªãããšã§ãã
åæ£ã倧ãããªã£ãããç¥ãå Žåã«ã¯æ£åŽéçå€ \(\chi^2(\phiã\frac{\alpha}{2})\)ãçšããŠãæ€å®çµ±èšéãšæ¯èŒããŸãã
ãŸããåæ£ãå°ãããªã£ãããç¥ãå Žåã«ã¯æ£åŽéçå€ \(\chi^2(\phiã1-\frac{\alpha}{2})\)ãçšããŸãã
èªç±åºŠã¯\(\phi=n-1\)ã
2ã€ã®æ¯åæ£ã®éãã«é¢ããŠ
2ã€ã®æ¯åæ£ã®éãã«é¢ããŠã¯Fååžãå©çšããŸãã
äŸãã°ãè£ çœ®Aãšè£ 眮Bã§åŸããããµã³ãã«ã®åæ£ãæ¯èŒãããå Žåãªã©ã§ããã
æ€å®çµ±èšé \(F=\frac{V_B}{V_A}\) ãšãããŸãã
ãã®ãšããæ£åŽéçå€ã¯ \(F(\phi_Bã\phi_AïŒ\frac{\alpha}{2})\) ã§ãã
èªç±åºŠã¯ \(\phi_A=n_A-1ã\phi_B=n_B-1\)ãšãªããŸãã
æ¯åæ£ã®æšå®
æ¯åæ£ã®æšå®ã¯éåžžã«ç°¡åã«æ±ããããšãã§ããŸãã
ç¹æšå®
ç¹æšå®ã¯ãæ¯åæ£ãç¹å®ã®1ã€ã®å€ã«æšå®ããŸãã
\(V=\hat{\sigma}^2\)
åºéæšå®
äžéå€ïŒ\(\frac{S}{\chi^2(\phiã1-\frac{\alpha}{2})}\)
äžéå€= \(\frac{S}{\chi^2(\phiã\frac{\alpha}{2})}\)
èšæ°å€ã®æ€å®ãšæšå®
ããã»ã©ãŸã§ã¯èšéå€ã®æ€å®ãšæšå®ã§ããã
èšéå€ãšã¯éã®åäœããããé£ç¶ããå€ã®äºã§ãã

ããã§ã¯ãèšæ°å€ã®æ€å®ãšæšå®ã解説ããŸãã
èšæ°å€ãšã¯ãåæ°ãæ°ãããããªå€ã§ãã

èšæ°å€ã®æ€å®
èšæ°äŸ¡ã®æ€å®ãæšå®ã«ã¯äºé ååžãšãã¢ãœã³ååžãçšããŸãã
ãã ãQCæ€å®ã¬ãã«ã§åºé¡ãããåé¡ã¯ãäºé ååžããã¢ãœã³ååžãæ£èŠååžãšããŠè¿äŒŒãããå Žåã«éãããŸãã
ã€ãŸããäºé ååžãšãã¢ãœã³ååžã§ç®åºããæ€å®çµ±èšéãšãæ£èŠååžè¡šã®æ£åŽéçå€ãæ¯èŒããããšãšãªããŸãã
äºé ååžã§ã¯ã\(np\ge5\) ãã€\(n(1-p)\ge5\) ã§ããããšããæ£èŠååžãšããŠæ±ãæ¡ä»¶ãšãªããŸãã
ãã¢ãœã³ååžã®å Žåã«ã¯ \(n\lambda\ge5\) ã§ãã
ããŸã«ãæååŒéšåããæ°åéšåãæ£èŠååžãšããŠæ±ãæ¡ä»¶ãšã¯ïŒãšããç©Žæãåé¡ã§åºé¡ãããŸãã
ãªã®ã§ãæ¡ä»¶ã«é¢ããŠãèŠããŠãããšè¯ãã§ãããã
äžé©ååâçâã«é¢ããæ€å®ãšæšå®
äžé©ååçã«é¢ããæ€å®ãšæšå®ã«ã¯äºé ååžãçšããŸãã
åãåºãã1ã€ã®éå£ã®äžé©ååçãšæ¯éå£ã®å·®ç°
P0=æ¯äžé©ååçãp=è©Šæäžã®äžé©ååçãx=äžé©ååæ°ãn=è©Šææ°ãšãããšã
æ€å®çµ±èšé \(Z=\frac{p-P_0}{\sqrt{\frac{P_0(1-P_0)}{n}}}\) ãã®ãšãã\(p=\frac{x}{n}\) ãšãªããŸãã
仮説ã®å€å®ã«ã¯æ€å®çµ±èšéãšæ£èŠååžè¡šã®æ£åŽéçå€ã䜿ããŸãã
åž°ç¡ä»®èª¬ãæ£åŽïŒæ€å®çµ±èšéâ§æ£åŽéçå€
åž°ç¡ä»®èª¬ãæ£åŽããå Žåã«ã¯ãåãåºããè©Šæããæšå®ãè¡ããŸãã
ç¹æšå®ïŒ\(\hat{P}=p=\frac{x}{n}\)
ä¿¡é Œçαã®åºéæšå®ïŒ\(p\pm Z(\frac{\alpha}{2})\times\frac{\sqrt{p(1-p)}}{\sqrt{n}}\)
åãåºãã2ã€ã®éå£ã®äžé©ååçã®å·®ç°
2ã€ã®éå£ãAãBãšçœ®ããããããã®æå±ãæ·»ãåã§èšèŒããŸãã
æ€å®çµ±èšé \(Z=\frac{p_A-p_B}{\sqrt{\bar{p}(1-\bar{p})(\frac{1}{n_A}+\frac{1}{n_B})}}\)
ããã§ã\(\bar{p}=\frac{x_A+x_B}{n_A+n_B}\)
å€å®ã«é¢ããŠã¯ãæ£èŠååžãšããŠæ±ãã®ã§æ£èŠååžè¡šã®æ£åŽéçå€ãçšããŸãã
æ¯äžé©åçã®æšå®ã¯ä»¥äžã®ããã«ãªããŸãã
ç¹æšå®ïŒ\(\hat{P_A}-\hat{P_B}=p_A-p_B\)
ä¿¡é Œçαã®åºéæšå®ïŒ\(p_A-p_B\pm Z(\frac{\alpha}{2})\sqrt{\frac{P_A(1-p_A)}{n_A}+\frac{p_B(1-p_B)}{n_B}}\)
äžé©ååæ°ã«é¢ããæ€å®
äžé©ååçã«é¢ããŠã¯ããã¢ãœã³ååžãçšããŸãã
1ã€ã®éå£ã®äžé©ååæ°ã«é¢ããŠ
æ¯äžé©åæ°\(\lambda_0\)ã®éå£ããè©Šænãåã£ãŠæ€æ»ãããšäžé©ååæ°ãTåããå Žåãè©Šæã®åäœåœããã®äžé©åæ°\(\hat{\lambda}\)ã\(\lambda_0\)ãšæ¯èŒããŸãã
æ€å®çµ±èšé \(Z=\frac{\hat{\lambda}-\lambda_0}{\sqrt{\frac{\lambda_0}{n}}}\)
å€å®ã«é¢ããŠã¯åæ§ã«æ£èŠååžè¡šã®æ£åŽéçãšæ¯èŒããŸãã
æ¯äžé©ååæ°ã®æšå®ã¯ä»¥äžã®éãã§ãã
ç¹æšå®ïŒ\(\hat{\lambda}=\frac{T}{n}\)
ä¿¡é Œçαã®åºéæšå®ïŒ\(\hat{\lambda}\pm Z(\frac{\alpha}{2})\times \frac{\sqrt{\hat{\lambda}}}{\sqrt{n}}\)
2ã€ã®äžé©ååæ°ã®éãã«é¢ããŠ
2ã€ã®éå£ãAãBãšçœ®ããããããã®æå±ãæ·»ãåã§èšèŒããŸãã
æ€å®çµ±èšéïŒ\(Z=\frac{\hat{\lambda_A}-\hat{\lambda_B}}{\sqrt{\hat{\lambda}\times (\frac{1}{n_A}+\frac{1}{n_B})}}\)
ãã®ãšãã\(\hat{\lambda}=\frac{T_A+T_B}{n_A+n_B}\)
å€å®ã«é¢ããŠã¯åæ§ã«æ£èŠååžè¡šã®æ£åŽéçãšæ¯èŒããŸãã
æ¯äžé©ååæ°ã®æšå®ã¯ä»¥äžã®éãã§ãã
ç¹æšå®ïŒ\(\hat{\lambda_A}-\hat{\lambda_B}\)
ä¿¡é Œçαã®åºéæšå®ïŒ\(\hat{\lambda_A}-\hat{\lambda_B}\pm Z(\frac{\alpha}{2})\sqrt{\frac{\hat{\lambda_A}}{n_A}+\frac{\hat{\lambda_B}}{n_B}}\)
ä»åã®èšäºã§ã¯ãåºæ¬çµ±èšéïœãæ€å®ã»æšå®ãåéãŸã§ã玹ä»ããŸããïŒ